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Abstract. 'We study the critical behaviour of a non-equilbrium model for adsorption—
desorption with diffusion. We consider a parallel updating rule of the cellular automata
type. Without diffusion, it is found that the critical exponents belong to the universality
class of directed percolation, as has already been shown for sequential dynamics. When
diffusion is present, the critical behaviour can be described in terms of a crossover
between the directed percolation regime and a dynamical mean-field regime associated
with the case of arbitrarily large diffusion.

1. Introduction

Simple examples of non-equilibrium systems whose steady state displays a phase
transition are lattice models where a binary variable ¥, = 0,1 is associated with
each site and where the evolution rule allows for the existence of an adsorbing state
(i.e. ¥, = 1 everywhere).

Applications range from processes of adsorption—lesorption of particles on a
surface 1) to models of spreading of a liquid through porous medium [2]. For a
given model, two types of dynamics can be considered. A sequential dynamics, for
which one updates one site at a time, or a parallel dynamics, where all the sites are
updated simultaneously, according to a so-called cellular automaton rule.

An interesting aspect of such models is the characterization of the critical prop-
erties at the non-equilibrium phase transition observed in the stationary states. For
sequential updating, it was argued, based on the results of various numerical sim-
ulations, that the critical exponents associated with those transitions belong to the
universality class of directed percolation (DP) [1]. However, some doubts were raised
for the case of parallel dynamics. Indeed, numerical simulations for a cellular au-
tomata version of the A model [3] lead to noticeably different critical exponents,

Further investigations are needed to clarify this question. Moreover, it is legiti-
mate to ask how robust the possible universality classes are to modifications in the
evolution mles of the model, Those are the guestions we address in this naper. which
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is organized as follows. In section 2, we deﬁne a cellular automaton model which is a

§ Present address: Group for Parallel Computing, SEINF, University of Geneva, 1211 Geneva 4,
Switzerland.
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generalization of the A model {1, 3]. In addition to the usual adsorption-desorption
processes, the particles are allowed to diffuse on the surface. Diffusion can be effi-
ciently included in a cellular automata dynamics by using the algorithms described in
[4] and [5].

In section 3, the phase diagram and critical exponents of the system are studied as
a function of a parameter p, characterizing the importance of the diffusion process.
Extensive simulations are performed using the dynamical approach introduced by
Grassberger [6] for DP. For the case without diffusion, it is found that the critical
exponents are compatible with those of directed percolation, in contradiction with
previous results [3]. The case with diffusion is more subtle to analyse. A coherent
picture is obtained in terms of effective exponents crossing over from their DP values
when p = 0, to their non-equilibrium mean-field value when p — co.

2. The model

We shall consider extensions of the so-called A mode!l which has been introduced by
Dickman and Burschka [7] as a simple mode} describing poisoning transitions similar
to the ones observed on catalytic surfaces. One considers a d-dimensional substratum
sparined by a regular hypercubic lattice. Each site has two possible states: empty or
occupied by a particle A, The first step of the dynamical process is the adsorption,
The probability for a vacant site to become occupied during a short time interval &t
8 pst. The second step of the process is desorption. The probability for an occupied
site x to become vacant is r&t, provided that at least one of the nearest neighbours
of z is vacant. During the time interval 64, one of the two processes occurs at each
site. For simplicity we shall restrict ourselves to the case » = (1 — p}. Qualitatively,
one expects that, if p is large enough, an initially empty substratum will be completely
covered by A particles, after some time. This is the poisoned phase or the adsorbing
state. But, if p is small enough, the desorption mechanism will be efficient enough to
prevent such a poisoning. Thus, one may anticipate the existence of a threshold value
p. such that, in the stationary state, the covering fraction of A on the substratum X,
will be 1 for p > p. (poisoned phase) and smaller than 1 for p < p.. If X, varies
continuously across p, the transition will be of second order and its behaviour near
the threshold will be described in term of the critical exponent G:

1~ Xa(P) ~(p.— )" (1)
The cellular automata version of this model is straightforward [3]. One considers a
d-dimensional lattice. Each cell of the lattice j has two possible states: |¥;) = |0}
or |A). The probabilistic celiular automata adsorption—desorption rules (ADR) are:

If [¥;)() = |0) then

g} (t+1)= {

If [¥;}(t) = [A) then
|AY with probability p if the site j has at least one
nearest-neighbour empty
W) (t+1) =< |A) with probability 1, if all the neighbours are occupied, (3)
|0} with probability (1 — p) if the site j has at least one
nearest-neighbour empty.

10) with probability (1 - p)

2
|A} with probability p. @
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A new ingredient is now added to the model, namely diffusion. Once the particles
have been adsorbed on the surface, they are not necessarily frozen on the surface be-
fore a possible desorption occurs; they can diffuse to nearest-neighbour empty sites.
Such a diffusion can be simulated in two dimensions by the following cellular au-
tomaton rule (DIFF) [4]: one divides the two-dimensional square lattice into adjacent
blocks, each of them containing 2 x 2 cells. These blocks are called the Margolus
neighbourhood. The diffusion process i realized in two steps. First,
a block are moved according to some symmetry operations conserving the number of
particles in each block. Among the possible symmetry operations, one has the £ /2
rotations and the identity transformation. For each block on the lattice, a randomly
chosen symmetry operation, belonging to the above set, is performed. Second, the
block sublattice is shifted by one lattice constant in both directions x and y. This step
allows the particles to move from one block to an adjacent one. The whole process
is then repeated and, thus, the particles can propagate randomly through the system.

Although the motions of the particles belonging to a same block are strongly
correlated, the second step of the algorithm ensures that these correlations disappear
rapidly. It was shown that this algorithm reproduces the usual diffusion equation at a
macroscopic scale [4]. The diffusion constant D is directly related to the probability
of performing a +x /2 rotation. In our case we have chosen D = a?/47, where a is
the lattice spacing and r the iteration time of the automata.

The global evolution rule is the following: one applies the rule ADR once and the
rule DIFF p times. For p = 0, one recovers the simple A model; for p — oo the
diffusion mixes all the states and one expects the behaviour of the system to be mean-
field like, Qualitatively, one anticipates that the diffusion will have two effects on the
phase diagram. First, the critical probability p_ should increase monotonically with
p. Second, the values of the critical exponents should vary from those of the pure
A model to their mean-field values. How this variation occurs (continuous variation
of the exponents as a function of p or simple crossover phenomena) is not an easy
question and will be discussed later on.
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3. Numerical simulations

Simulations has been done for a two-dimensional system of size L x L, with L = 128
and 256. The stationary quantities were obtained as follows. Starting from an initial
state where each cell is empty, one iterates the evolution rules for 1000 steps (per
site} which turns out to be sufficient to reach stationarity. The stationary values
are then computed by averaging over 200 measures, cach of them separated by 100
iteration steps (per site). Moreover an average was made over 20 samples.

The first quantity recorded is the density of A particles adsorbed, which is related
to the order parameter of the problem. One should be very careful with the finite
size effects. Indeed, if the dynamics is ergodic, a temporal average over an arbitrarily
long time would lead to a vanishing order parameter for all values of p. Thus the
time average performed to measure the stationary quantities should extend on a
time interval large enough to guarantee stabie values, but not too large to allow the
system to explore a ‘non-physical’ ergodic component of the phase space. This remark
is particularly important in the vicinity of the critical probability p_, where critical
slowing down is observed [8]. Since it is crucial to have a very precise determination
of p_ to obtain the critical exponents, a different approach should be used to find p_.
We applied the method introduced by Grassberger (or DP [6].
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We started with a lattice filled with A particles, except for ore single site and
let the system evolve according to the CA rules. We measured the density of empty
sites ng(t), the average square cluster size¢ R(7) and the survival probability P(t)
during the simulation. If the system is sufficiently large so that none of the clusters
we simulate reaches the boundaries, our data are free of finijte size effects.

At the critical probability p_, we expect power law behaviour for these quantities,
namely

Ai(t) ~ ™ )

where A;(t) stands for ng, R? or P. In a log-log plot of these quantities, upward
(downward) curvatures indicates that the value of p is super (sub) critical. The critical
probabilitics obtained for different values of p are quoted in the second column of
table 1.
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Figure 1. Phase diagram for several values of p. The density X4 of A particles adsorbed
in the stationary state is plotted as a function of p for p=0,1,2,5.

Having a precise determination of p_, we can now draw the phase diagrams. In
figure 1, the phase diagrams are given for several values of p. One notices that the
phase boundary behaves differently as a function of p as one approaches the critical
probability p.(p). As expected, p_(p) i an increasing function of p; for large values
of p, the phase boundary approaches the critical probability in a much more linear
way than for smaller values of p. This is again in agreement with the interpretation
of a more mean-field-like behaviour as o becomes large.

The order parameter critical exponent 3(p) as defined by (1) can be extracted
from these data. In figure 2, the logarithm of 1 — X ,(p) is plotted as a function
of the logarithm of p_(p) — p for the cases p = 0 and 5. The values of the critical
exponent 3(p) are given in table 1. We note that for p = 0, the value of 3 is now
compatible with the one of D, in agreement with the Grassberger conjecture [9).
One notes that B(p) increases linearly with p for the values of p considered.

However, these values for 3(p) should be interpreted carefully. Indeed, due to
finite size of the lattices considered in the simulations one cannot investigate values of
p arbitrary close to p.. At best (p.{p) — p)/p.(p) ~ 1073 can be obtained. It may



Critical behaviour of a diffusive model 1089

-1.5

-2.0

-2.5

+ p=0
O p=3

-3.0

-33

In(1-X,)

-4.0

-4.5

-5.0
-7.5 -6.5 -5.5 -4.5 -3.5

In(p(P)-p)

Figure 2. Logarithmic dependence of the density of empty sites 1 — X, in the stationary
state as a function of the logarithm of p.(p) — p for p = 0,5,

Table 1 Critical probability p and order paramcter critical exponent 3{p) for several
vaiues of p.

P Pc(P) ﬁeﬂ'

a 0.7278 1 0.0003 0.56 + 0.02
1 0.7518 + 0.0004 059 £+ 003
2 07702 + 00003  0.64 @ 0.03
5 0.7833 £ 00004 Q.70 = 0.03
oa 0.8000 1.00

well be that, as p increases, the width of the critical region decreases and that the
true critical behaviour is not seen in our simulation. The critical exponents quoted in
table 1 would simply be an apparent exponent characterizing how the phase boundary
behaves near but not very close to the critical point. However, it is this apparent
exponent which is of importance for interpreting the experimental data.

A more satisfactory way to describe the situation is to introduce, by analogy with
equilibrium critical phenomena, a so-called effective critical exponent defined as follows
[10]:

B.alp,6p(p)) = 5p(p) 202 _d)gg((z)‘%(p))] )

with 6p(p) = p.(p) — p.

This effective exponent has been calculated for sceveral values of p. The derivative
in this equation is performed numerically and, as a result, the data are quite noisy.
A smoothed interpolation of 3.4 as a function of (p.(p) ~ p) for several values of
p is given in figure 3. For p = 0, one sees that the effective exponent does not vary
with p in the range investigated ((p.(p)— ») < 0.025). For p > 0, the effective
exponent is compatible (taking into account error barsy with the DP exponent when
(p.(p) — p) — 0. It increases when (p.(p) — p) increases. The departure from its
DP value, at fixed 6p(p), is larger when p increases, in agreement with the idea of a
crossover towards a mean-field behaviour for very large values of p.
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Figure 3. Effective exponent B.q(p, (pc(p} — p)) as a function o (pc(p) — p) for
p=0,2,5.

4. Conclusions

The first conclusion concerns the case without diffusion p = 0. These results lead
to critical exponents in agreement with those obtained by Dickman et af [1], namely
the critical exponents of the d-dimensional A modcl (the ones of DP in dimension
d + 1), independently of the type of dynamics used. The reason for the discrepancy
with previous results has been traced back to uncxpectedly poor properties {11] of
the random generator used in [3].

As far as the case with diffusion is concerned, the results of the simulation can
be explained in a fairly convincing way in terms of an effective exponent and a
crossover from DP to mean-field behaviour. A similar question has been addressed by
Dickman for a model with sequential dynamics [12]. However, the values of p used
in these simulations were not large enough to see a significant deviation of the order
parameter critical exponent from its DP value.

However, further work is needed to provide a more ‘first principles’ explanation to
our findings. One important point would be to formulate a non-equilibrium version of
the Ginzburg-Landau criterion [13] used in the framcwork of the equilibrium phase
transition. One would like to know how the parameters of the model (in particular
p) enter into the width of the critical region. A more ambitious programme would
be to formulate a renormalization group approach for this non-equilibrium problem.
One then would be able to decide if one has a crossover between twa different fixed
points, the DP one (for p = 0) and the mean-ficld one (for p = co) or if one may
find a line of fixed point (parametrized by p) with continuously varying exponents.
Both problems are currently investigated.
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