
Critical behaviour of a diffusive model with one adsorbing state

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 1085

(http://iopscience.iop.org/0305-4470/25/5/016)

Download details:

IP Address: 171.66.16.59

The article was downloaded on 01/06/2010 at 17:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 25 (1992) 1085-1091. Printed in the UK 

Critical behaviour of a diffusive model with one adsorbing 
state 

Franco Bagnolit, Bastien Chopardtq, Michel Drozs and Laurent 
Rachebourgs 
t Dipanimento di Fisica and INFM Sezionc di Firenze 1-50125, Firenze, Iu ly  
% HLRZ; KFA-Julich Postfach 1913. D-5170 hjlich, Germany 
5 Department of ?heoretical Physics University of Geneva 1211 Geneva 4, Switzerland 

Received 4 September 1991 

AbslracL We study the critical khaviour of 21 non-equilbrium model for adsorption- 
desorption with diffusion. We mnsider a paralllrl updating mle  of the cellular automata 
type. Wthout diffusion. it is found that the critical erponenu belong to the univemlily 
class of directed percolation, as has already ken shown for sequential $namics. When 
diffusion b present, the critical behaviour can lx described in terms of a cmssover 
beween the directed permlation regime and a dynamical mean-field regime associated 
with the case of arbitrarily large diffusion. 

1. Intmduction 

Simple examples of non-equilibrium systems whose steady state displays a phase 
transition are lattice models where a binary variable @i = 0 , l  is associated with 
each site and where the evolution rule allows for the existence of an adsorbing state 
(i.e. qj = 1 everywhere). 

Applications range from processes of adsorption4esorption of particles on a 
surface [l] to models of spreading of a liquid through porous medium [2]. For a 
given model, WO types of dynamics can he considered. A sequentid dynamics, for 
which one updates one site at a time, or a pura//d dynamics, where all the sites are 
updated simultaneously, according to a so-called cellular automaton rule. 

An interesting aspect of such models is the characterization of the critical prop- 
erties at the non-equilibrium phase transition obsewed in the stationary states. For 
sequential updating, it was argued, based on the results of various numcrical sim- 
ulations, that the critical exponents associated with those transitions belong to the 
universality class of directed percolation (DP) [l]. However, some doubts were raised 
for the case of parallel dynamics. Indeed, numerical simulations for a cellular au- 
tomata version of the A model [3] lead to noticeably different critical exponents. 

Further investigations are needed to clarify this question. Moreover, it is legiti- 
mate to ask how robust the possible universality classes are to modifications in the 
p.y&tio: p~!es ~f fip mdp!. n.as~ .  are the qcesticfi.: wc address h this pp", 
is organized as follows. In section 2, we define a ccllular automaton model which is a 
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generalization of the A model [l, 31. In addition to the usual adsorption-desorption 
processes, the particles are allowed to diffuse on the surface. Diffusion can be effi- 
ciently included in a cellular automata dynamics by using the algorithms described in 
[4] and [SI. 

In section 3, the phase diagram and critical exponents of the system are studied as 
a function of a parameter p, characterizing the importance of the diffusion process. 
Extensive simulations are performed using the dynamical approach introduced by 
Grassberger i6j fur DP. For the aiise wr'iiioui diihusion, it is found that the criticai 
exponents are compatible with those of directed percolation, in contradiction with 
previous results [3]. The case with diffusion is more subtle to analyse. A coherent 
picture is obtained in terms of effective exponents crossing over from their DP values 
when p = 0, to their non-equilibrium mean-field value when p -+ M. 

2. The model 

We shall consider extensions of the so-called A model which has been introduced by 
Dickman and Burschka [q as a simple model describing poisoning transitions similar 
to the ones observed on catalytic surfaces. One consiclers a ddimensional substratum 
spanned by a regular hypercubic lattice. Each site has two possible states: empty or 

The probability for a vacant site to become occupied during a short time interval 61 
is p61 .  The second step of the process is desorption. The probability for an occupied 
site 1: to become vacant is r6 t ,  provided that at least one of the nearest neighbours 
of 5 is vacant. During the time interval 6 t ,  one of the two processes occurs at each 
site. For simplicity we shall restrict ourselves to the case T = (1 - p ) .  Qualitatively, 
one expects that, if p is large enough, an initially empty substratum will be completely 
covered by A particles, after some time. This is the poisoned phase or the adsorbing 
state. But, if p is small enough, the desorption mechanism will be efficient enough to 
prevent such a poisoning. Thus, one may anticipate the existence of a threshold value 
p ,  such that, in the stationary state, the covering fraction of A on the substratum X A  
will be 1 for p 2 p ,  (poisoned phase) and smaller than 1 for p < p,.  If X ,  varies 
continuously across pc  the transition will be of second order and its behaviour near 
the threshold will be described in term of the critical exponent 0: 

~ r + e . l  by 2 parti& .A- 5 . e  first st.e.p of the dynamics! p r e s s  b @..e ~&firnrinn 

(1) P - x A ( P )  ( P c  - P) ' 

The cellular automata version of this model is straightforward [3]. One considers a 
ddimensional lattice. Each cell of the lattice j has two possible states: IQ j )  = 10) 
or JA). The probabilistic cellular automata adsorption4esorption rules (ADR) are: 

If IQi ) ( i )  = lo) then 

10) I Q J ) ( t  ') = { IA) 
with probability (1 - p )  
with probability p .  

If l Q j ) ( l )  = (A) then 

IA) with probability p if the site j has at least one 
nearest-neighbour empty 

with probability (1 - y )  if the site j has at least one 
nearest-neighbour empty. 

IA)  with probability 1, if all the neighbours are occupied, (3) 

lo) 
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A new ingredient is now added to the model, namely diffusion. Once the particles 
have been adsorbed on the surface, they are not necessarily frozen on the surface be- 
fore a possible desorption occurs; they can diffuse to nearest-neighhour empty sites. 
Such a difision can he simulated in two dimensions by the following cellular au- 
tomaton rule (DIFF) [4]: one divides the two-dimensional square lattice into adjacent 
blocks, each of them containing 2 x 2 cells. These blocks are called the Margolus 

a block are moved according to some symmetry operations conserving the number of 
particles in each block. Among the possible symmetry operations, one has the f7r/2 
rotations and the identity transformation. For each block on the lattice, a randomly 
chosen symmetry operation, belonging to the above set, is performed. Second, the 
block sublattice is shifted by one lattice constant in both directions z and y. This step 
allows the particles to move from one block to an adjacent one, The whole process 
iS then repeated and, thus, the particles can propagate randomly through the system. 

Although the motions of the particles belonging to a Same block are strongly 
correlated, the second step of the algorithm ensures that these correlations disappear 
rapidly. It w a s  shown that this algorithm reproduces the usual diffusion equation at a 
macroscopic scale [4]. The diffusion constant D is directly related to the probability 
of performing a fn j2  rotation. In our case we have chosen D = a 2 / 4 r ,  where a is 
the lattice spacing and T the iteration time of the automata. 

The global evolution rule is the following: one applies the rule ADR once and the 
rule DIFF p times. For p = 0, one recovers the simple A model; for p - 00 the 
difTusion mixes all the states and one expects the behaviour of the system to be mean- 
field like. Qualitatively, one anticipates that the ditfusion will have two effects on the 
phase diagram. First, the critical probability p c  should increase monotonically with 
p. Second, the values of the critical exponents should vary from those of the pure 
A model to their mean-field values. How this variation occurs (continuous variation 
of the exponents as a function of p or simple crossover phenomena) is not an easy 
question and will be discussed later on. 

EeighboKhnnd. The difksi!?!! process b rcP!izec! i:: "W steps. F.:st, the pnrtic!es ic 

3. Numerical simulations 

Simulations has been done for a two-dimensional system of size L x L, with L = 128 
and 256. The stationary quantities were obtained as follows. Starting from an initial 
state where each cell is empty, one iterates the evolution rules for 1MM steps (per 
site) which turns out to he sufficient to reach stationarity. The stationary values 
are then computed by averaging Over 2M) measures, each of them separated hy lo0 
iteration steps (per site). Moreover an average was made over 20 samples. 

The first quantity recorded is the density of A particles adsorbed, which is related 
to the order parameter of the problem. One should be very careful with the finite 
size effects. Indeed, if the dynamic; is ergodic, a temporal average over an arbitrarily 
long time would lead to a vanishing order parameter for all values of p. Thus the 
time average performed to measure the stationary quantities should extend on a 
time intewal iarge enough to guarantee stabie vaiues, but not too iarge to aiiow the 
system to explore a 'non-physical' ergodic component of the phase space. This remark 
is particularly important in the vicinity of the critical probability p, ,  where critical 
slowing down is observed [SI. Since it is crucial to have a very precise determination 
of p ,  to obtain the critical exponents, a different approach should he used to find p,. 
We applied the method introduced by Grassberger liir DP (61. 
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We started with a lattice filled with A particles, except for oce single site and 
let the system evolve accarding to the CA rules. We measured the density of empty 
sites no(l), the average square cluster size R2( t )  and the survival probability P(1) 
during the simulation. If the system is sufficiently large so that none of the clusters 
we simulate reaches the boundaries, our data are free of finite size effects. 

At the critical probability p , ,  we expect power law behaviour for these quantities, 
namely 

where Ai(l)  stands for no, RZ or P. In a log-log plot of these quantities, upward 
(downward) curvatures indicates that the value of p is super (sub) critical. The critical 
probabilities obtained for different values of P are quoted in the second column of 
table 1. 

0.90 L,.' s" / 
00 

P 
I 1 I 1 

0.74 0.76 0.78 0.80 0.82 

P 
Plgure t Phase diagram for w e m l  values of p.  nie density XA of A panicles adsorbed 
in the slalionaly slate is plotted as a function of p for p = 0, 1,2 ,5 .  

Having a precise determination of p,, we can now draw the phase diagrams. In 
figure 1, the phase diagrams are given for several values of p. One notices that the 
phase boundary behaves differently as a function of I, as one approaches the critical 
probability p,(p).  As expected, p,(p) is an increasing function of p; for large values 
of p, the phase boundary approaches the critical probability in a much more linear 
way than for smaller values of p. This is again in agreement with the interpretation 
of a more mean-field-like behaviour as p becomes large. 

The order parameter critical exponent p ( p )  as defined by (1) can be extracted 
from these data. In figure 2, the logarithm of 1 - X , ( p )  is plotted as a function 
of the logarithm of p , ( p )  - p for the cases p = 0 and 5. The values of the critical 
exponent p ( p )  are given in table 1. We note that Cor p = 0, the value of /3 is now 
compatible with the one of DP, in agreement with the Grassberger mnjecture [SI. 
One notes that p ( p )  increases linearly with p for the values of p considered. 

However, these values for p ( p )  should be interpreted carefully. Indeed, due to 
finite size of the lattices considered in the simulations one cannot investigate values of 
p arbitrary close to p,. At best ( p , ( p )  - p ) / p , ( p )  - can be obtained. It may 
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state as a function OF lhe logarithm of p c ( p )  - 11 for p = 0 , 5 .  

‘hbk L CxilicaI probability p c  and anler paramcler critical arpnenl P ( p )  for several 
MlUeS Of p. 

P P C b )  Pcfi 

0 0.7278 f O.WO3 0.56 f 0.02 
1 0.7518 f O.WO4 0.59 + 0.03 

5 0.7833 f O.WO4 0.70 f 0.03 
m 0 . m  l .W 

z 0.7702 + 0.~03 0.u 0.03 

well be that, as p increases, the width of the critical region decreases and that the 
true critical behaviour is not seen in our simulation. Thc critical exponents quoted in 
table 1 would simply be an apparent exponent characterizing how the phase boundary 
behaves near but not very close to the critical point. However, it is this apparent 
exponent which is of importance for interpreting the experimental data. 

A more satisfactoly way to describe the situation is to introduce, by analogy with 
equilibrium critical phenomena, a so-called efeclivr crifical exponent defined as follows 
[lo]: 

with ~ P ( P )  = - p .  
This effective exponent has been calculated for scveral values of p. The derivative 

in this equation is performed numerically and, as a result, the data are quite noisy. 
A smoothed interpolation of PeH as a function of (pc (p )  - p) for several values of 
p is given in figure 3. For p = 0, one sees that t h c  effective exponent does not mry 
with p in the range investigated ( ( p , ( p )  - p) < 0 .025) .  For p > 0, the effective 
exponent is compatible (taking into account error bars) with the DP exponent when 
( p , ( p )  - p) -+ 0. It increases when ( p , ( p )  - p )  increases. The departure from its 
DP value, at fixed 6 p ( p ) ,  is larger when p increases, in agreement with the idea of a 
crossover towards a mean-field behaviour for very large values of p. 
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Figure 3. Effective exponent P c f i ( p ,  ( p c ( p )  - 1 ' ) )  as a function o ( p c ( p )  - p )  for 
p = 0 , 2 , 5 .  

4. Conclusions 

The first conclusion concerns the case without diffusion p = 0. These results lead 
to critical exponents in agreement with those obtained by Dickman et af [l], namely 
the critical exponents of the ddimensional A modcl (the ones of DP in dimension 
d + l), independently of the type of dynamics used. The reason for the  discrepancy 
with previous results has been traced back to uncxpcctedly poor properties [ l l ]  of 
the random generator used in [3]. 

As far as the case with diffusion is concerned, the results of the simulation can 
be explained in a fairly convincing way in terms of an effective exponent and a 
crossover from DP to mean-field behaviour. A similar question has been addressed by 
Dickman for a model with sequential dynamics [12]. However, the values of p used 
in these simulations were not large enough to see a significant deviation of the order 
parameter critical exponent from its DP value. 

However, further work is needed to provide a more 'first principles' explanation to 
our findings. One important point would be to formulate a non-equilibrium version of 
the Ginzburg-Landau criterion (131 used in the framcwork of the equilibrium phase 
transition. One would like to know how the pardmctcrs of the model (in particular 
p) enter into the width of the critical region. A more ambitious programme would 
be to formulate a renormalization group approach for this non-equilibrium problem. 
One then would be able to decide if one has a crossover between two different fixed 
points, the DP one (for p = 0) and the mean-field one (for p = M) or if one may 
find a line of fixed point (parametrized by p)  with continuously mrying exponents. 
Both problems are currently investigated. 
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